skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Muthuchamy, Mariappan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The lymphatic vascular function is regulated by pulsatile shear stresses through signaling mediated by intracellular calcium [Ca 2+ ] i . Further, the intracellular calcium dynamics mediates signaling between lymphatic endothelial cells (LECs) and muscle cells (LMCs), including the lymphatic tone and contractility. Although calcium signaling has been characterized on LEC monolayers under uniform or step changes in shear stress, these dynamics have not been revealed in LMCs under physiologically-relevant co-culture conditions with LECs or under pulsatile flow. In this study, a cylindrical organ-on-chip platform of the lymphatic vessel (Lymphangion-Chip) consisting of a lumen formed with axially-aligned LECs co-cultured with transversally wrapped layers of LMCs was exposed to step changes or pulsatile shear stress, as often experienced in vivo physiologically or pathologically. Through real-time analysis of intracellular calcium [Ca 2+ ] i release, the device reveals the pulsatile shear-dependent biological coupling between LECs and LMCs. Upon step shear, both cell types undergo a relatively rapid rise in [Ca 2+ ] i followed by a gradual decay. Importantly, under pulsatile flow, analysis of the calcium signal also reveals a secondary sinusoid within the LECs and LMCs that is very close to the flow frequency. Finally, LMCs directly influence the LEC calcium dynamics both under step changes in shear and under pulsatile flow, demonstrating a coupling of LEC–LMC signaling. In conclusion, the Lymphangion-Chip is able to illustrate that intracellular calcium [Ca 2+ ] i in lymphatic vascular cells is dependent on pulsatile shear rate and therefore, serves as an analytical biomarker of mechanotransduction within LECs and LMCs, and functional consequences. 
    more » « less
  2. The pathophysiology of several lymphatic diseases, such as lymphedema, depends on the function of lymphangions that drive lymph flow. Even though the signaling between the two main cellular components of a lymphangion, endothelial cells (LECs) and muscle cells (LMCs), is responsible for crucial lymphatic functions, there are no in vitro models that have included both cell types. Here, a fabrication technique (gravitational lumen patterning or GLP) is developed to create a lymphangion-chip. This organ-on-chip consists of co-culture of a monolayer of endothelial lumen surrounded by multiple and uniformly thick layers of muscle cells. The platform allows construction of a wide range of luminal diameters and muscular layer thicknesses, thus providing a toolbox to create variable anatomy. In this device, lymphatic muscle cells align circumferentially while endothelial cells aligned axially under flow, as only observed in vivo in the past. This system successfully characterizes the dynamics of cell size, density, growth, alignment, and intercellular gap due to co-culture and shear. Finally, exposure to pro-inflammatory cytokines reveals that the device could facilitate the regulation of endothelial barrier function through the lymphatic muscle cells. Therefore, this bioengineered platform is suitable for use in preclinical research of lymphatic and blood mechanobiology, inflammation, and translational outcomes. 
    more » « less